If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(h^2)-33h=0
a = 1; b = -33; c = 0;
Δ = b2-4ac
Δ = -332-4·1·0
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-33}{2*1}=\frac{0}{2} =0 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+33}{2*1}=\frac{66}{2} =33 $
| 18+0.12x=9+0.17x | | (k^2)+12k=0 | | (x^2)+21x+20=0 | | (p^2)+6p+9=0 | | 2x−4=x+1 | | 5^3-10^2=x(8-2)+2x=3x | | (m^2)-11m=0 | | (s^2)-12s+20=0 | | (4x3)x(2x)=48 | | 7x−6=8x-27 | | a=(a+20)(a+5) | | 16x-38=17x-26 | | 3(z−12)−17=–11 | | (f^2)+29f=0 | | 26x+22=9x+1 | | x2−2=38 | | 2x+26=x+25=180 | | 2x+26=x+25=1280 | | 3x5x+10=180 | | −3x−12=−39 | | -7/2x+3/2=-3x-4/3 | | 1/4(8x-4)=1/3(12x+3) | | x^{2-}6x-27=0 | | 0.6y+1=1/4y-15 | | 7x-13+16x-38=90 | | 2x2−45=0 | | 15,860+20.75x=62.069+11.25x | | 0.90+0.05(18+x)=0.10(-110) | | 5(4)^x=675 | | 2(-4x+6)=3x+7 | | k/6.2+66.9=47.6 | | 0.10x+0.05(18-x)=0.10(16) |